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Abstract

In this thesis, we perform a number of progressively more complex experiments that
examine the utility of Hierarchical Temporal Memory (HTM) networks in the task of
visual online motion pattern prediction. First we discuss the requirements for predicting
visual motion patterns with HTM networks and build a framework that fulfills these
requirements. In the first experiment we demonstrate a working system that is capable
of predicting motion patterns for an input space describable by a stateless machine. We
then expand upon this network to create a machine that can predict motion patterns
that requires a stateful machine to predict. Next, we use data from repetitive tasks
in real world camera captures as input and adjust the network to be able to predict
motion in that input space. To examine the progress we compare the three iterations
of the network and find that the last iteration performs best or similarly to the other
two iterations in all experiments. In conclusion, the presented system is capable of
performing varying motion pattern prediction tasks from visual data without requiring
human adjustments. Finally we discuss what future work could be made to expand
upon this system.
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1 Motivation

In Robotics, interaction with humans is a very important component for many prac-
tical applications, to utilize strength and advantages of both human and robotic or
algorithmic workers. Recently, Huber et al. have shown that workflows are absolved
more quickly with active robot assistance than with no assistance [Hub+13] (Figure 1.1).
They showed that any non-adaptive strategy examined (sensor-based trigger, averaged
static times step-specific waiting times) have significantly higher waiting times for both
the human performing the task, as well as the robot assisting with it. However, for
a fully adaptive assistant to act at the times required for optimal waiting times for
both actors, it cannot simply act whenever the human is already done with the task
provided. This was shown by the experiment’s sensor-based trigger assistant that acted
exactly when the human was done with the previous task. In fact, an assistant that was
ready to assist at the exact time the human was ready to receive assistance improved
the workflow speed of the task even better than a perfect always-wait assistant, which
can assist at any time it is required.

Figure 1.1: [Hub+13] Humans absolving a task with robot assistance

That means that an optimal assistant acts in a predictive manner. In highly vision-
based tasks such as assembly of machine parts, accountancy or mechanical reparation,
a motion prediction system has to be implemented that makes predictions based on
visual data to capture all the information that is required for an accurate prediction
based on the situation.

Robotics, however, is not the only application of motion prediction. One other
application is the use in medical fields as a surveillance system of patients. The earlier
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1 Motivation

the system can detect danger by predicting it, the quicker help can arrive for the patients,
as well as offering the capability to collect data speci�c to the danger [Ugo+13]. Using
a vision-based system especially enables the system to be non-intrusive and applicable
to any patient. Motion prediction can also be used as part of smart anomaly detection
systems in surveillance systems. If collected data can be minimized by stripping away
unwanted or insigni�cant parts, analysis can be a lot more meaningful as well as easy
for either humans or other systems.

Some approaches, both analytical and those utilizing neural networks, have already
been implemented in an attempt to predict motion. However, those approaches lack two
fundamental components essential for a system dealing with real-world data motion
prediction. The �rst aspect is inherent temporality. To properly analyze and interpret
temporally complex situations, e.g. with changing speeds or repeating frames, the
system needs a temporal aspect in the algorithm rather than one simply added onto it
after design. The second aspect is online learning. In the real world, situations change
both short-term and long-term, and a good predictive system needs to be able to adjust
to changes on the �y rather than needing to be re-adjusted and parametrized after set
intervals of time to eliminate the need for a manual component to run the system.

Hierarchical Temporal Memory The technology HTM provides both online learning
and inherent temporality and is therefor well-suited for online motion prediction.
While running, a HTM's cells make constant predictions about the next step and their
synapses to other cells are reinforced or punished according to the Hebbian Rule of
Learning [Heb57]. Due to these constant next-step predictions, further predictions such
as 5-step or 10-step predictions can be extrapolated using a weight matrix.

Another important aspect of HTMs is its usage of Sparse Distributed Representation
(SDR)s for both input and output. SDRs are long binary vectors with a low number of
on-bits, also called the Hamming Weight.

The capacity of an SDR c is lower than that of a conventional dense bit array cd.
Given the vector length n, they can be calculated asc = ( n

w) < 2n = cd where n > w > 0.
However, in a trade-off, SDRs have a higher noise tolerance and can thus be considered
stabler under varied inputs [AH16]. Using a threshold overlap for comparison, SDRs
can tolerate extremely high noise values with low false positives in equality. Many
systems using digital sensors, computer vision being one, are subjected to a lot of noise
and can thus bene�t from high noise tolerance.

Outline In this thesis we attempt to create a network that is capable of online predic-
tion of visual motion in varying tasks. To create such a system, we �rst start with a
HTM network designed to solve a very speci�c visual prediction task. We then progres-
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1 Motivation

sively increase the dif�culty of the predictions by introducing more complex aspects
for the input data, and for each iteration adjust the network to produce optimal results
in the new problem space. After each experiment we draw conclusions on the current
state of the network and its capabilities and analyze the predictions made. Numenta
claims that a HTM shares many traits with the way actual human brains compute their
data [HAD10; HA16; HAC17]. It is therefore interesting to examine if predictions made
by HTM networks also share aspects of predictions made by humans. If it is possible
to make comparisons between aspects of the predictions made by the HTM networks
in this thesis and humans, this thesis can hopefully contribute towards research into a
better understanding of human intelligence itself. While it is still possible to perform
complex algorithms on the data prior to encoding to ease the computational load on
the network, to enable the HTM-human comparison, computations performed in this
thesis are passed to the network in relatively raw forms with minimal pre-computation
instead. This allows us to investigate how well the network is capable of performing
all logical tasks required for the prediction itself. A system capable of solving very
different tasks without individual adjustments would be very useful as it would save
time on implementation of complex systems solving speci�c tasks.
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2 State of the Art

Before we begin with the experiments examining the capabilities of HTM networks
regarding visual prediction of motion patterns, we review other work that has been
done in the same �eld. We also assess the state of Numenta Platform for Intelligent
Computing (NuPIC), Numenta's implementation of HTM systems that is used in this
thesis, including important metrics for evaluating the accuracy of predictions.

2.1 Related Work

In robotics, Visual human analysis, or "looking at people" [Gav99], has been one of
the classic and most popular research �elds, since it is essential for dynamic human-
robot interaction. It is also a skill humans can do very well while our computers are,
historically, very bad at it.

Motion prediction especially, coming with a broad range of practical applications, has
been a popular study �eld for a long time. These include parts of systems for human-
robot-interaction [Hub+13; Haw+13], full-body capture, surveillance, user interfaces or
motion analysis [WRB11].

However, new technologies such as the Arti�cial Neural Network (ANN), algorithms
and altogether different approaches regularly inspire new solutions and progress the
�eld. We currently differentiate between 3 approach types:

analytical logical approaches to prediction, linear extrapolation
of movement

trained ANN system trained to understand speci�c patterns

ANN with online learning system with online learning to understand dynamic
patterns

Extremely simple approaches, such as the constant pose predictor, can currently
often outperform other very high-tech complex algorithms in metrics such as 0.4 and 1
second prediction error, where predictions are compared to the actual data. This gives
research some very good baselines to compare state-of-the-art motion prediction to
[MBR17].

These are recent approaches and other related work in the 3 approach types:

4



2 State of the Art

Analytical Analytical approaches for motion prediction were the �rst to be considered
and have, compared to neural networks, a very long history, with a large number of
approaches that so far turn out to be comparatively high-effort. Still, logical under-
standing of image sequences is important and can contribute to solving many related,
albeit usually highly specialized, problems.

Some early approaches to the problem include an approach by Polana et al., where
human action is described statistically by segmenting, normalizing and recognizing
based on low-level features in repetitive motion [PN94], (Haar) wavelet coef�cients as
low-level intensity features [Ore+97], or active shape models to track contours [Coo+95].
Recognition of object movement with very distinct shapes (most importantly the hand)
could easily be assessed by simple background subtraction, noise reduction and succinct
shape analysis [Gav99].

Recently, Zhou et al. [Zho+15] have shown a simple baseline that concatenates
features from visual questions' words and Convolutional Neural Network (CNN)
image features that performs on-par with current purely ANN based approaches.
Jabri et al. [JJM16] present a simple baseline that, while only recognizing whether
complete image-question-answer triplet is correct rather than creating an answer itself,
still achieves state-of-the-art performance compared to more complex approaches,
suggesting a lack of visual grounding concepts for questions and answers. Lehrmann
et al. [LGN13], too, show a simple baseline performing competitively. They implement
a non-parametric bayesian network model as a prior of human pose, which can be used
for pose tracking.

Huber et al. [Hub+10] developed an algorithm modeling human behavior, using a
linear dependency to develop kalman �lters in order to predict human behavior in
assembly tasks.

Trained ANN While these analytical approaches are certainly useful for their in-
tended purposes, it is becoming clear that prediction of motion patterns requires some
completely different approach to become tractable. Qualitatively, the predictions made
by these systems make little sense to humans examining them. For that metric, ANNs
have recently shown a lot of promise. Quantitatively, however, ANNs still have a way to
go before reliably outperforming the aforementioned analytical baselines - for example
by .4 and 1 second prediction error metrics.

Fragkiadaki et al. [FLM15] introduced a network with LSTM-3LR (3 layers of
Long Short-Term Memory cells) and ERD (Encoder-Recurrent-Decoder) that is able to
produce plausible long-term human motion predictions. However, it requires speci�c
tuning by introducing random noise during training, otherwise it quickly accumulates
errors and loses its realistic capabilites.
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2 State of the Art

Jain et al. [Jai+15] proposed a network called structural recurrent neural networks that
introduces expert knowledge into neural network architectures and thus outperforms
previous work both qualitatively and quantitatively. It utilizes semantic knowledge
about the network as input, and dynamically assigns different recurrent neural networks
to similar parts of the data.

Martinez et al. [MBR17] analyzed the previous [Jai+15; FLM15] recent deep recurrent
neural network methods by looking at the architectures, loss functions, and training
procedures. They proposed 3 changes that that resulted in motion prediction that can
compete with other state-of-the-art approaches.

ANN with online learning There have not yet been many approaches to prediction
of motion patterns. However, there has been some work proving the general capability
of HTMs to deal with human poses and motion.

Zhang et al. [Zha+09] have implemented a two-stage approach to detection of people
eating and drinking using a single accelerometer sensor attached to the participants'
wrists. In the �rst step, the raw accelerometer data is interpreted into euler angles
using the Extended Kalman Filter. A HTM is then used to classify the actions. The
approach achieves the detection task with high accuracy. While non-visual, this shows
that a HTM is a very viable approach to human action observation.

Zhituo et al. [ZHH12] presented a content-based image retrieval system utilizing
multiple HTM classi�ers. An image is classi�ed, and from a database a semantically
similar image is selected. Ugolotti et al. [Ugo+13] also developed SDR encoders
speci�cally for HTM. They presented a four-camera detection and classi�cation of
multiple human activities at the same time, implemented using HTM. The focus is on
rogue behavior detection: When a patient is in danger, it activates an accelerometer
worn by the person to collect a more complete fall data pro�le for later analysis. This
detection system is meant to lengthen the short battery life on the accelerometers.

To the best of our knowledge, there hasn't yet been any work examining the predictive
aspect of HTM using a human-oriented visual motion setup as of yet.

2.2 A Brief Introduction to Hierarchical Temporal Memory

In their book, J. Hawkins and S. Blakeslee provide explanations on how certain aspects
of the human brain operate from a state-of-the-art neurological point of view [HB04].
The neocortex in mammals is strongly associated with all conscious thought effort and
many important functions that separate them from other, less intelligently regarded
animals such as birds or reptiles. They thus proposes to start there when looking to
implement intelligence in other systems.
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2 State of the Art

The neocortex has a lot of different regions consisting of many neurons and synapses,
but apart from their contextual place in the brain de�ned by how they're connected
to other parts of the body, they all operate roughly by the same rules on the inside,
indicating that there is a basic approach to its function that could be extracted and
implemented in other systems. These regions are interconnected through nerve �bers
in a hierarchy. Input is handled at sensory regions, which feed-forward into other
regions, being associated with progressively more abstract and permanent concepts
[HB04].

Figure 2.1: [HA16] Comparison between Inputs and Outputs of Biological Neurons and
HTM Neurons

Hierarchical Temporal Memory The HTM approach to machine intelligence attempts
to implement the neocortex's logic into a digital, well-de�ned algorithmic space. Each
neuron can roughly be considered to be represented by a binary cell: 1 if �ring, 0 if
not (Figure 2.1). The initial states are provided by an encoder, which converts data
into binary vectors stored into a sensor region. The vectors are fed into different kinds
of regions, e.g. the Spatial Pooler and the Temporal Memory. Finally, classi�ers are
created for some sensor regions for evaluation, which convert the current state into
readable data (Figures 2.2 and 2.3).

A HTM contains two important types of data mapping algorithms, the Spatial Pooler
and the Sequence Memory.

Spatial Pooling The Spatial Pooler groups spatially similar data. In it, each cell
is connected to a number of cells in an individual potential space from an input
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2 State of the Art

Figure 2.2: General Structure in a HTM: A sensor provides data, which is computed
by regions such as the Spatial Pooler or the Temporal Memory, and �nally
the data is classi�ed with regards to the Sensor Region to create a readable
output

region. On each step, the cells have a chance to �re if suf�cient input bits are activated.
When �ring, the cell feed-forwards its value to the output, and adjusts its synapses'
connectivity to other cells according to the Hebbian Rule of Learning: Connections to
cells that previously �red are strengthened, while connections to those that didn't are
weakened. A �ring cell inhibits other nearby cells from �ring. An algorithm called
boosting encourages unused cells to �re by counting their duty cycles, which ensures
an ef�cient use of cells as well as preventing unnecessary overload of cells already in
use, increasing effectiveness in learning different patterns.

Sequence Memory The Temporal Memory (Figure 2.4) groups temporally similar
data. In it, each input-cell (now considered a mini-column) is split into multiple cells
sharing the same distal connections (contextual: same level on the hierarchy), but
differing in proximal connections (input: lower level on the hierarchy). When a column
�res based on proximal connections, it is determined which cell from the column �res
based on the distal connections. When no cell can be determined, the column bursts,
�ring all its cells. When �ring, the column feed forwards its value to the output, and
adjusts its synapses' connectivity to other columns according to the Hebbian Rule of
Learning.

In addition to the two data mapping algorithms, there are two other important types
of regions: Sensor regions and classi�er regions.
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2 State of the Art

Figure 2.3: Hierarchy of a HTM: In general, hierarchies in a HTM get smaller and
adjust slower the later they appear in the hierarchy. Each region layer in the
hierarchy is spatially and possibly topologically mapped onto the next in a
feed-forward input. Each layer also receives distal input from itself.

Sensors A sensor region contains input data fed into it by a sensor mapped by an
encoder. The encoder usually has an input of itself, for example a table of scalar values
or a camera input. It converts this sensory data into an SDR.

Like in the neocortex, only a fraction of cells is activated at one time, de�ning the
concept of the input space approximately and optimally as an SDR.

Classi�ers A classi�er region is always connected to a sensor region. It therefore
converts an SDR from another region into data resembling that provided by its sensor
region. It can only classify data represented by previous states of the sensor region
(buckets).

Encoders and SDRs To understand the properties and examine the quality of our
encoders used in the experiments, we need to introduce a few metrics for their produced
SDRs.

The sparsity is a good indicator on an SDR's quality - it should be low and preferably
similar on each step [AH16]. The vector length n and Hamming Weight w can be used
to calculate the sparsity s:

s =
w
n
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2 State of the Art

Figure 2.4: [HA16] Temporal Memory in a HTM: A Temporal Memory can differentiate
between different sequences sharing Inputs

A difference score can be used to compare different SDRs in the same model. This is
especially useful to compare the accuracy of a prediction against the real data that is
acquired later. We de�ne the difference score d as the euclidean distance between two
vectors v1 and v2:

d = kv1 � v2k
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